

Abstracts

A Dispersion Formula Satisfying Recent Requirements in Microstrip CAD

M. Kobayashi. "A Dispersion Formula Satisfying Recent Requirements in Microstrip CAD." 1988 Transactions on Microwave Theory and Techniques 36.8 (Aug. 1988 [T-MTT]): 1246-1250.

A dispersion formula, $\epsilon_{eff}(f) = \epsilon^* - \{\epsilon^* - \epsilon_{eff}(0)\}/\{1 + (f/f_{50})^m\}$, for the effective relative permittivity $\epsilon_{eff}(f)$ of an open microstrip line is derived satisfying recent CAD requirements. Closed-form computations with error less than 1 percent compared with numerical solutions are obtained. The frequency f_{50} at which $\epsilon_{eff}(f_{50}) = \{\epsilon^* + \epsilon_{eff}(0)\}/2$ (the 50 percent dispersion point) is used as a normalizing frequency in the proposed formula, and an expression for f_{50} is derived. In order to obtain the best fit of $\epsilon_{eff}(f)$ to the theoretical numerical model, the power m of the normalized frequency in the proposed formula is expressed as a function of w/h for $w/h \geq 0.7$ and as a function of w/h , f_{50} , and f for $w/h \leq 0.7$. The present formula has a high degree of accuracy, better than 0.6 percent in the range $0.1 < w/h \leq 10$, $1 < \epsilon^* \leq 128$, and any h/λ_0 .

[Return to main document.](#)